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rather unlikely to be able to detect such a species in the acetylene 
isomerization even if it were an intermediate. 

J^=. Ph3P , / l^^^CO^H, (2) 
CO2CH3 p h C H 3 

60°, 2h 9 0 % 

1 

The isomerization of eq 2 was explored as a function of the 
phosphine to probe the mechanism of the reaction. Poorer donor 
trivalent phosphorus compounds like phosphites are almost un-
reactive as catalysts. On the other hand, more nucleophilic 
phosphines like hexamethylphosphorus triamide or, better, tri-
n-butylphosphine lead to faster consumption of allene but con­
siderable production of oligomeric products. To differentiate 
between nucleophilicity and basicity as the more important factor, 
tertiary amines were examined. No reaction was observed! While 
space limitations preclude further mechanistic speculation, the 
current observations support the concept of a series of prototropic 
shifts triggered by nucleophilic addition of the phosphine. The 
simplicity and extraordinary selectivity of the procedure make 
it a very practical approach for the synthesis of the very useful 
polyene carbonyl systems. Its extraordinary chemoselectivity 
enhances the utility of this new type of catalysis for internal redox 
compared to typical transition metal catalyzed processes. 
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Hemibrevetoxin B (1), isolated from Gymnodinium breve, is 
a member of the "red tide" associated class of marine neurotoxins.1 

Herein we report the first total synthesis of this structurally novel 
molecule in its naturally occurring form. 

After several abortive attempts to construct the hemibrevetoxin 
B polycyclic skeleton by a convergent approach, we chose a linear 
route in which each ring was constructed sequentially starting from 
ring A and moving toward ring D (Scheme I). This, one ring 
at a time, sequential approach may also be Nature's way of 
forming the brevetoxins.2 
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f Visiting scientist from Dainippon Pharmaceutical Company, 1990-1992. 
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Scheme I. Structure and Retrosynthetic Disconnections of 
Hemibrevetoxin B (1). Cyclization Sequence: a, /5, 7 

2: D-Mannose 

The total synthesis of hemibrevetoxin B (1) was executed as 
outlined in Scheme II. The mannose-derived3 starting material 
3 was converted to intermediate 4 by desilylation-benzylation, 
followed by removal of the acetonide and selective elaboration 
of the liberated diol using "Bu2SnO-BnBr and TBSOTf. Extension 
of the side chain of 4 to reach the allylic epoxide 5 was achieved 
by ozonolysis, followed by Wittig reaction, Dibal reduction, 
Sharpless epoxidation, SO3Py oxidation, and a second Wittig 
olefination. Regio- and stereospecific ring closure of 5 under acidic 
conditions4 led to the bicyclic intermediate 6 in 90% yield. 
Stitching the third ring required the intermediacy of compound 
7, which was derived from 6 by silylation, followed by hydro-
boration, aldehyde generation, conjugated ester formation, and 
hydrogenation. Sequential ester hydrolysis and desilylation of 7 
followed by lactonization using the Yamaguchi protocol5 furnished 
lactone 8. Elaboration of lactone 8 using our previously developed 
technology6'7 of thionolactone formation followed by organo-
metallic reagent addition and a sulfur elimination sequence 
proceeded smoothly, furnishing the enol ether 9 in 70% overall 
yield. The alternative procedure via the enol triflate and side chain 
addition developed by Murai8 gave 9 in 75% overall yield from 
8. Regio- and stereoselective hydroboration of 10 as previously 
developed7 led to 10 (separated from a ca. 4:1 mixture of C-14 
epimers), which was elaborated to tetracycle 11 by standard 
chemistry. Repeat of the side chain attachment as described above 
for 8 -* 10 followed by Swern oxidation led to a mixture of 
epimeric ketones (C-19, hemibrevetoxin B numbering). Equili­
bration of this position with DBU in refluxing toluene followed 
by MeMgI addition led to a 3:2 epimeric mixture (at C-18, isomer 
12 is the major product) of alcohols from which 12 was isolated 
by chromatography. Removal of both benzyl groups from 12 
followed by differentiation of the generated hydroxyls and ela­
boration of the primary position led to methyl ester 13. Intro­
duction of the diene system was accomplished by selective desi­
lylation followed by Swern oxidation, a Wittig reaction with the 
ylide derived from PhSe(CH2)3Ph3P

+r-"BuLi, and oxidation-
syn-elimination of the resulting selenide. Finally, reduction of 
the ester group followed by Swern oxidation and in situ treatment9 
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Scheme II. Total Synthesis of Hemibrevetoxin B" 
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" Reagents and conditions: (a) (i) 1.2 equiv of TBAF, THF, 25 0C, 1 h, 94%; (ii) 1.5 equiv of NaH, 0.2 equiv of "Bu4NI, 1.2 equiv of BnBr, THF, 
25 0C, 24 h, 90%; (iii) 5 equiv of 80% TFA, toluene, O °C, 15 min, 98%; (iv) 1.1 equiv of "Bu2SnO MeOH, 60 0C, 1.5 h, then solvent replaced with 
DMF and treated with 1.5 equiv of BnBr, 1.2 equiv of CsF, 16 h, 25 0C, 81% (overall for this one-pot procedure); (v) 1.2 equiv of TBSOTf, 1.5 equiv 
of 2,6-lutidine, CH2Cl2, O

 0C, 0.5 h, 96%; (b) (i) O3, CH2Cl2, -78 0C, 10 min, then Ph3P, 25 0C, 1 h; (ii) 1.2 equiv of Ph3P=C(Me)CO2Me, 
benzene, 80 0C, 2 h, 70%; (iii) 2.2 equiv of DIBAL-H, CH2Cl2, -78 0C, 1 h, 90%; (iv) 0.2 equiv of (+)-DET, 0.15 equiv of Ti(O1Pr)4, 1.5 equiv of 
1BuOOH, CH2Cl2, 4-A molecular sieves, -40 — -20 0C, 16 h, 98%; (v) 2.5 equiv of S03-py, 4 equiv of Et3N, CH2Cl2-DMSO (4:1), 0 cC, 2 h, 72%; 
(vi) 1.5 equiv of Ph3P

+CH3Br, 1.3 equiv of NaN(TMS)2, THF, 0 0C, 1 h, 87%; (c) (i) 1.2 equiv of TBAF, THF, 25 0C, 2 h, 97%; (ii) 0.3 equiv 
of CSA, CH2Cl2, 0

 0C, 5 h, 90%; (d) (i) 1.2 equiv of TBSOTf, 1.5 equiv of 2,6-lutidine, CH2Cl2, 0
 0C, 10 min, 85%; (ii) 1.2 equiv of BH3-THF, 

THF, 0 0C, 1 h, NaOH-H2O2, 90%; (iii) Swern oxidation, 98%; (iv) 1.2 equiv of Ph3P=CHCO2Me, benzene, 25 °C, 3 h, 89%; (v) H2, 5% Pd/C, 
EtOAe, 15 h, 96%; (e) (i) 1.5 equiv of LiOH-H2O, THF-H2O (1:1), 50 0C, 1 h, 92%; (ii) 1.2 equiv of TBAF, THF, 25 0C, 18 h, 95%; (iii) 1.1 equiv 
of 2,4,6-trichlorobenzoyl chloride, 1.5 equiv of Et3N, THF, 0 0C, 1 h then 6 equiv of DMAP, benzene, 80 0C, 3 h, 97%; (f) (i) 2 equiv of Lawesson's 
reagent, toluene, 110 0C, 3 h, 82%; (ii) 3 equiv of TBSO(CH2)4(2-Th)(CN)CuLi2, ether, -78—10 0C, 4 equiv of I(CH2)4I, 5 equiv of pempidine, 
1 h, 85%; (g) 1.2 equiv of BH3-THF, THF, 0 0C, 1 h, NaOH-H2O2, 89%; (h) (i) 1.1 equiv OfAc2O, 1.2 equiv of DMAP, CH2Cl2, 1 h, 25 0C, 95%; 
(ii) 0.2 equiv of CSA, MeOH-CH2Cl2 (1:1), 0 0C, 1 h, 90%; (iii) 3 equiv of PDC, DMF, 16 h, 25 0C, 89%; (iv) 1.1 equiv of K2CO3, MeOH, 3 h, 
25 0C, 82%; (v) 1.1 equiv of 2,4,6-trichlorobenzoyl chloride, 1.5 equiv of Et3N, THF, 0 0C, 1 h, then 6 equiv of DMAP, benzene, 5 h, 80 0C; (i) (i) 
1.2 equiv of Lawesson's reagent, toluene, 110 0C, 5 h, 75%; (ii) 3 equiv of TBSO(CH2)3(2-Th)(CN)CuLi2, ether, -78 — 0 0C, 4 equiv of I(CH2)4I, 
5 equiv of pempidine, 2 h, 85%; (iii) 1.2 equiv of BH3-THF, THF, 0 0C, 1 h, NaOH-H2O2, 89%; (iv) Swern oxidation, 90%; (v) 0.3 equiv of DBU, 
toluene, 110 0C, 2 h, 92%; (vi) 1.1 equiv of MeMgI, ether, -78 — -10 0C, 4 h, 94%; (j) (i) H2, Pd(OH)2, EtOAc, 40 psi, 4 h, 89%; (ii) 1.2 equiv 
of 1BuCOCl, 1.4 equiv of DMAP, CH2Cl2, 25 0C, 1 h, 90%; (iii) 2.2 equiv of TBSOTf, 2.5 equiv of 2,6-lutidine, CH2Cl2, 3 h, 25 0C, 82%; (iv) 2.2 
equiv of DIBAL-H, CH2Cl2, -78 0C, 15 min, 96%; (v) Swern oxidation; (vi) 1.1 equiv of Ph3P=CHCO2Me, benzene, 3 h, 80% for two steps; (vii) 
H2, 5% Pd/C, EtOAc, 16 h, 95%; (k) (i) 0.2 equiv of CSA, MeOH-CH2Cl2 (1:1), 0 0C, 3 h, 86%; (ii) Swern oxidation, 90%; (iii) 1.5 equiv of 
PhSe(CHj)3Ph3P

+I-, 1.1 equiv of "BuLi, THF, -78 — 25 0C, 15 min, 72%; (iv) H2O2, NaHCO3, THF, 16 h, 25 0C, 78%; (1) (i) 2.2 equiv of 
DIBAL-H, CH2Cl2, -78 °C, 3 h, 95%; (ii) Swern oxidation, 1.5 equiv of Me2(CH2)N

+I', -78 — 25 0C, 24 h, 90%; (iii) SiF4, CH3CN-CH2Cl2 (1:1), 
0 0C, 2 h, 82%. 

of the resulting aldehyde with Eschenmoser's salt led, upon workup 
and desilylation,10 to hemibrevetoxin B (1) in 70% overall yield 
from 14. Synthetic 1 exhibited spectral data identical (IR, MS, 
UV, 1H and 13C NMR) to those of the naturally derived mate­
rial.11 

The described synthesis represents the first total synthesis of 
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not only 1 but also any member of the brevetoxin class.12 
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